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Abstract—Detumbling refers to the act of dampening the an-
gular velocity of the satellite. This operation is of paramount
importance since it is virtually impossible to nominally perform
any other operation without some degree of attitude control.
Common methods used to detumble satellites usually involve
magnetic actuation, paired with different types of sensors which
are used to provide angular velocity feedback.
This paper presents the adverse effects of time-discretization
on the stability of two detumbling algorithms. An extensive
literature review revealed that both algorithms achieve absolute
stability for systems involving continuous feedback and output.
However, the physical components involved impose limitations
on the maximum frequency of the algorithm, thereby making
any such system inconceivable. This asserts the need to perform
a discrete-time stability analysis, as it is better suited to reflect
on the actual implementation and dynamics of these algorithms.
The paper starts with the current theory and views on the
stability of these algorithms. The next sections describe the
continuous and discrete-time stability analysis performed by the
team and the conclusions derived from it. Theoretical inves-
tigation led to the discovery of multiple conditions on angular
velocity and operating frequencies of the hardware, for which
the algorithms were unstable. These results were then verified
through various simulations on MATLAB and Python3.6.7. The
paper concludes with a discussion on the various instabilities
posed by time-discretization and the conditions under which the
detumbling algorithm would be infeasible.
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1. INTRODUCTION
Detumbling refers to the act of reducing the angular velocity
of the satellite to come under an acceptable predefined value.
The state of high angular velocity can be induced after
deployment from the launch vehicle, or naturally in orbit due
to disturbance torques. Detumbling is an essential task, as
it would precede any other operation on the satellite which
needs some degree of attitude control.

The work presented in this paper was conducted in associ-
ation with Team Anant, a group of undergraduate students
working to build a 3U CubeSat. Specific to the mission, low
angular velocity is desirable as an entry condition to various
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pointing and tracking modes [1]: (1) Hyperspectral Imaging,
(2) GS Tracking, (3) Sun Pointing.

The team explored two different detumbling algorithms and
compared their efficiency, stability and power metric. The
simulations were performed for a 3U Cubesat in a sun-
synchronous, Low Earth Orbit (LEO) using MATLAB [2]
and Python 3.6.7. Since detumbling is a high priority task,
a thorough stability analysis was done which aimed to check
the feasibility of detumbling the satellite from any given
initial condition and chosen timestep. As reported in [3], the
expected rate of initial tumbling is 10 deg/s. However, im-
perfect deployment or space debris might cause an unusually
high tumbling rate, which the satellite should be prepared to
tackle appropriately. An example of this is the Swisscube
[4], which had an initial tumbling rate of 200 deg/s and
was allowed to naturally detumble for a year, before normal
operations commenced.

The paper aims at analysing the stability from two different
perspectives. While the continuous time analysis does hint
at the behaviour of the controller, and clearly the reasons
for its robustness, we also see that it fails to mimic the true
implementation in some cases. The discrete time analysis
shows how initial conditions and the parameters chosen for
the controller might affect the stability of the algorithms.

The next section goes over the essential background infor-
mation needed to perform the analysis. The theory and on
board implementation of two algorithms are discussed. This
section is followed by a summary of the existing perspectives
on stability for the respective algorithms. The subsequent
content shows the limitations of this perspective, and the
advantages in shifting to a discrete-time analysis, which accu-
rately reflects the actual implementation of these algorithms.
Instability criteria are derived and explained for simple cases.
Simulations are also performed which demonstrate the valid-
ity of the theoretical approaches used, and show the behavior
of these controllers for asymmetrical bodies. The paper
concludes with a discussion on the instability conditions and
the results from the various simulations performed.

2. DETUMBLING ALGORITHMS
This section describes the background of the selected de-
tumbling algorithms and the dynamical equations used to
analyse the behaviour of the satellite. While the algorithms
differ in the choice of sensors, both use magnetic actuation to
detumble the satellite. Thus, both algorithms aim to calculate
an appropriate magnetic moment which must be produced so
as to interact with the external magnetic field and reduce the
angular velocity.

Given the choice of magnetic actuation, the expressions for
the torque and the rotational dynamics equation are as follows
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[5]:
ω̇BI

B = (IB)−1[ΓB − ωBI
B × (IB ωBI

B )] (1)

ΓB = mB × bB (2)

In the above equations, ωBI
B is the angular velocity of the

body with respect to an inertial frame, represented in the
body frame. ΓB , mB and bB is the external torque (only
due to magnetic interactions), magnetic moment, and external
magnetic field, all represented in the body frame. For the sake
of convenience, we will drop the subscript and assume that
the body frame representation is used except when indicated
otherwise.

It must be noted that, while using magnetic actuation, we can
never have a component of torque along the instantaneous
local magnetic field. This can be seen as a result of (2). How-
ever, the lack of control of the angular velocity component
parallel to this field is taken care of due to the spatial and
temporal variation of the magnetic field in an orbit [6].

The first control algorithm uses both angular velocity and
magnetic field information as feedback. The second algo-
rithm (BDot) uses only the latter as input. The rate at which
these values are received from the magnetometer and IMU
will determine the frequency at which we can run these
algorithms. Discretized controller and considerations for its
implementation are discussed later.

Algorithm 1: (ω × b)

The magnetic moment generated is perpendicular to the an-
gular velocity and the local magnetic field vector. Angular
velocity can be split up into two components: a component
which is along the direction of the local magnetic field and a
component which is normal to it. The magnetic moment for
the control law is calculated as follows [5]

m =
kc
‖b‖2

(ω × b) (3)

Here, kc is a scalar gain, ω is the angular velocity of the
satellite, and b is the local magnetic field. This particular se-
lection of magnetic moment ensures that the torque produced
is antiparallel to the angular velocity component normal to
the magnetic field.

Feedback for this control law comes from the Inertial Mea-
surement Unit (IMU), as well as the magnetometer. It is to
be noted that the use of onboard IMU will require calibration
and evaluation of bias and drift.

Algorithm 2: ḃ

The Bdot control law calculates magnetic moment using the
rate of change of the magnetic field. It utilizes feedback
exclusively from the magnetometer. The control law takes
the following form [5].

m = − kc
‖b‖2

(ḃ) (4)

In actual implementation, the rate of change of magnetic field
is calculated by using a finite difference method as described
in (5)

ḃ =
bk − bk−1

Ts
(5)

Comparison

It can be shown that the control law for both algorithms are
similar, and in fact identical under the following assumptions.

1. ḃI ≈ 0

2. ˙bB is a continuous time derivative, and not calculated
using (5).

The magnitude of the effective rotation rate of the exter-
nal magnetic field is of the order of the orbital rate (10−3

rad/s). This is several orders lower than the angular velocity
encountered when the satellite is tumbling, and hence the
assumption that it can be ignored is valid. This assumption
breaks down when the angular velocity of the satellite is very
small. In such a case this rotation rate is significant and
hinders the controllability from that point forward. Therefore,
while similar to the first algorithm, Bdot cannot completely
detumble the satellite.

The second assumption states that Bdot should be calculated
in continuous time, and that the finite difference method used
to calculate the former is not always a reliable representation
of the angular velocity. In practice, the magnetometers alone
cannot give us Bdot in continuous time and is limited by
its maximum frequency of operation. Therefore, a small
timestep is desired so as to mimic a near-continuous calcu-
lation. Further limitations of the finite difference method are
discussed in the following sections.

Substituting the aforementioned assumptions in equation (6),
we can show that that the magnetic moment induced by both
algorithms are indeed equal (7).

˙bB = ABI ḃI − ωBI
B × bB (6)

˙bB ≈ −ω × bB (7)

Scalar Gain

The scalar gain kc (3) (4), to be used in the detumbling
algorithms on board, was selected after a literature review
and various simulations. A possible candidate for the same
is shown below.

The gain expression, proposed in [7] is based on analysing the
closed loop dynamics of the component of angular velocity
perpendicular to the earth’s magnetic field.

kc =
4π

Torb
(1 + sinξ) Jmin (8)

Here, Torb represents the orbital time of the satellite, ξ
represents the inclination of the satellite with respect to the
geomagnetic equatorial plane, and Jmin is the minimum
principle moment of inertia for the satellite.

A close look at the gain (8) and the constants present in the
control laws reflect independence of the angular acceleration
from the magnitude of the magnetic field and relative size of
the body. This results in effective control which is strictly a
function of the current angular velocity.

3. CONTINUOUS-TIME STABILITY ANALYSIS
In this section, we approach the problem of stability analysis
by assuming continuous time feedback and control. The
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rotational dynamics concerning angular velocity is as given
by (1). For torque determined by the control laws, the
analysis of the dynamical system is expected to show that the
angular velocity will asymptotically converge to zero.

In some cases, the behaviour of a system can be inferred by
using Lyapunov’s second method [8]. This method relies on
the observation that asymptotic stability is very well linked to
the existence of a Lyapunov’s function V (x), which is defined
by the following conditions

1. V (x) > 0 for all x 6= 0 ; V (0) = 0

2. d(V (x))
dt ≤ 0 for all x

The stability thus described implies that the equilibrium point
x∗ = 0 is stable and locally attractive. If condition two is
changed to a strict inequality, it is shown that the existence
of a Lyapunov function for a given system guarantees asymp-
totic stability.

From this perspective, we proceed to define a Lyapunov
function candidate for our system:

V (ω) =
1

2
ωT (IB) ω (9)

where IB is a symmetric positive definite matrix describing
the moment of inertia of the body. In a physical sense,
V (ω) is the rotational kinetic energy of the rigid body. The
strictly positive definite nature of this function comes from its
quadratic form and the properties of IB .

To apply the second theorem of Lyapunov, we take a time
derivative of this function:

V̇ (ω) =
1

2
(ω̇T I ω + ωT I ω̇)

= ωTΓ
(10)

We can get an expression for the torque by subsituting (3) and
(4) in (2). Furthermore,(7) shows that the control laws for
both algorithms can be assumed to produce the same torque,
which is the following:

Γ = −kc(13 − b̂ b̂T ) ω (11)

Subsituting (11) in the expression for V̇ , we get

V̇ = −kc ωT (13 − b̂ b̂T ) ω

= −ωT Φ ω
(12)

Where Φ is a positive definite matrix. Therefore V̇ is
expressed in a negative semidefinite quadratic form, and is
zero only when w tends to zero or ω is parallel to b. Its phys-
ical interpretation indicates that the rotational kinetic energy
always decreases, except for when the angular velocity is in
the direction of the instantaneous magnetic field, or is zero.
This result is consistent with the fact that we can never have
a component of torque along the magnetic field.

Once the angular velocity is be reduced only to its component
along the field, the control is effectively stopped. However,
as mentioned before, the magnetic field is time variant.
The change in the field would misalign it from the angular
velocity, and hence control will be resumed. Therefore, in
all practical situations, asymptotic convergence of angular
velocity to zero is achieved due to the global variation of the
magnetic field.

4. DISCRETE-TIME STABILITY ANALYSIS
The practical implementation of these control laws is in
discrete time, and the frequency of operation is dependent on
the hardware employed. The rate at which these algorithms
run will be dependent on the maximal frequency of the sensor
as well as the characteristics of the processor and actuators.

In using these algorithms in discrete time (assuming duty
cycle unity), the magnetic moment calculated is constant in
the body frame, for a given time step ∆t. This implies that
the change in torque over ∆t is due to the relative motion
of the magnetic field with respect to the constant magnetic
moment.

The discretized dynamical equation (13) describes a non-
linear non-autonomous system, where ω̇(t) describes the
angular acceleration acting on the body, as evaluated using
Eq. 1.

ωk+1 = ωk +

∫ t+∆t

t

ω̇(t) dt (13)

In this section, we will explore three types of instabilities.
The analysis follows reasonable assumptions in order to sim-
plify the equations and build an intuitive sense for the source
of the instability. The exact dynamics and results achieved by
numerical methods are shown in the next section.

Type I

This instability arises when the control torque applied over
the timestep causes certain components of the angular ve-
locity to flip and increase,hence increasing the net rotational
kinetic energy.

For the sake of analysis, we isolate this type of instability
from the others mentioned by assuming that the angular
velocity of the satellite is low. Therefore the torque in the
time period ∆t can be taken as constant. We also assume that
the control law being used is (3), so that the inaccuracy of the
finite difference method used in Bdot is not included.

We expect that the aforementioned instability will arise when
either the timestep ∆t or the magnitude of torque is too
large. Under certain conditions described below, the control
laws defined above are not asymptotically stable. To use
Lyapunov’s second method on a discrete system, we need to
replace the time derivative with a difference [9]. So criterion
for instability now becomes

V̇ (x)⇒ V (xk+1)− V (xk) > 0 (14)

For the purposes of analysis, we take the body to be spheri-
cally symmetric. The [ωBI

B × (IB ωBI
B )] term is zero, and

we have effectively decoupled the components of angular
velocity. Given that there is no control along the b axis, the
dynamical behavior is restricted to the plane perpendicular to
this axis. The discretized equation is now simply:

ωk+1 = ωk + Γ
∆t

I
(15)

where Γ is the torque and I is the moment of inertia of the
spherical body.

By using the Lyapunov candidate function (9) and the relation
(15), we can evaluate (14). This will reflect on the system
dynamics of angular velocity with discrete-time control.

V (ωk+1)−V (ωk) =
1

2
ωT

k+1(I) ωk+1−
1

2
ωT

k (I) ωk (16)
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Substituting (11) as Γ, we get the following condition for
instability

kc
I

∆t > 2 (17)

The condition is derived by isolating it from other sources of
instability. We can recognize (17) in another form:

Γ

I
∆t > −2ω⊥ (18)

This form supports our initial expectations. It is clearly
seen that the controller is unstable if the torque acting on a
component of angular velocity, enables a difference of more
than twice the component itself over that period of time. The
component effectively flips in direction and keeps growing.
This would occur in every iteration (when m is refreshed), and
angular velocity would increase. This behaviour will persist
till the change in torque over the timestep is too large to be
ignored.

This condition demonstrates the dependence of stability on
the timestep and gain chosen.

Type II

This type is specific to the Bdot controller described in (4).
The source of the instability lies in the limitations of using
magnetometer readings to get a sense of the angular velocity.

In the discretized controller, ḃ in (7) is replaced by the finite
difference method shown in (5). From the equations, we
can see that the difference vector bk+1 − bk should give us
information about the component of angular velocity perpen-
dicular to it. Henceforth we shall refer to this component as
ω⊥.

The limitations occur when b rotates more than π radians.
The discretized version of (7) will interpret that the smaller
angle between bk+1 and bk is a result of ω⊥. Hence, when
the angle θ is more than π radians, the algorithm assumes
π − θ is the angle b rotated by. Therefore, the ω⊥ is falsely
assumed to be in the opposite direction, and the controller
will contribute a positive angular acceleration to the satellite.
This acceleration will continue until the controller reaches its
equilibrium point ω∗⊥ = 2π rad/s.

The aforementioned limitation can be empirically illustrated
by looking at the dependence of the induced angular velocity
(at the start of the interval) on angular velocity. We will
approach this by taking the case of a spherically symmetric
body and analysing its behaviour. First, we assume a rotation
about the z-axis only. It should be noted that since the body
rotates with ω with respect to the inertial frame, b will rotate
with −ω with respect to the body. Given a measurement
bk−1, the subsequent measurement after ∆t is:

bk =

[
cos(ωz ∆t) sin(ωz ∆t) 0
−sin(ωz ∆t) cos(ωz ∆t) 0

0 0 1

]
bk−1 (19)

By using (4) and (5), it can be shown that the expression for
angular acceleration about the z-axis is

ω̇z(tk) = −C sin(ωz ∆t)

where C =
kc (b2x + b2y)

∆t I ‖b‖

(20)

Figure 1 represents the phase portrait with stable and unstable
equilibrium points at even and odd multiples of π respec-
tively, as described by (20). This shows us that in order
for the satellite to start detumbling, and effectively reach the
equilibrium point ω ≈ 0, the following criterion will have to
be fulfilled:

∆t <
π

‖ω‖
(21)

It is worth mentioning that (21) is basically an expression of

0
0.5π
∆t

1π
∆t

1.5π
∆t

2π
∆t

2.5π
∆t

3π
∆t

3.5π
∆t

4π
∆t

−k

k

Angular Velocity (ω)

ω̇
z
(t
k
)

Figure 1. Stability and Instability Points

the Nyquist theorem. This theorem determines the maximum
sampling time ∆t needed in order to represent a signal
without aliasing [10]. Hence, this maximum is half the time
it takes for b to rotate once.

In conclusion, during the process of implementing BDot,
attention also needs to be given to the maximum allowed
angular velocity that the system can effectively control.

Type III

This type of instability applies to both the algorithms. Its
basis lies in the fact that the torque provided by the actuators
changes in the timestep ∆t.

Due to the discrete nature of the update, magnetic moment is
fixed for a given ∆t. The rotation of the external magnetic
field with respect to the induced magnetic moment, as seen
in the body frame, results in a time varying torque. For de-
tumbling to proceed, the integral of torque over this timestep
should be negative, so that there is a net deacceleration.

To build an understanding of this effect, consider the body to
be spherically symmetric. As mentioned before, this restricts
the dynamics to a plane and helps simplify the analysis. The
system of differential equations for this system, for the initial
conditions shown in Figure 2, are as follows:

θ̇ = ω

ω̇ = −kc ωi

I
cos(θ)

(22)

ω and ωi are the angular velocity and the inital angular
velocity. The latter is a constant, while the former changes
over the timestep. I is the moment of Inertia of the spherically
symmetric body.

As per the body frame representation shown in Figure 2, θ is
the angle by which magnetic field has rotated from its initial
value binit to b. The magnetic moment m is fixed in the body
frame.

To discover our instability criterion, we now need to get an
expression for ω(t). If this is smaller than the inital angular
velocity, then the satellite will detumble. However, getting
an exact expression for ω(t) is out of the question due to the
non- integrability of the system of differential equations (22).

We now assume that the time varying torque has a negligible
effect on θ, as compared to the effect due to a high angular
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Figure 2. Change in Magnetic Field, in Body Frame

velocity. The benefit of incorporating this assumption is
twofold. Firstly, it helps us isolate this type of instability from
the Type I, since condition (17) will never be fulfilled. Sec-
ondly, this assumption can be used to make (22) integrable.
While it should be noted that this assumption might not be
valid for all cases, it will help us look at the behaviour of the
system during this instability.

With this, we get θ = ωit. Noting that the initial angular
velocity is fixed, the equations are solved

ω̇ = −kc ωi

I
cos(ωit)

ω(t) = −kc sin(ωit) + ωi

(23)

The above equation illustrates the dependence of ω(t) on both
timestep and initial angular velocity. Replacing t = ∆t, we
now proceed to express the criterion for stability:

ω(t)− ωi = ∆ω = −kc sin(ωi∆t) < 0 (24)

It can be shown that, to satisfy the inequality in (22), the
following criterion will have to be fulfilled:

∆t <
π

‖ω‖
(25)

After the theoretical approach given above, (22) is numeri-
cally integrated and it is seen that both results match. The
following graphs show the simulations performed by the
team, in order to validate the derived instability conditions.

Figure 3 and 4 show the dependence of the change in an-
gular velocity after one iteration, on both the initial angular
velocity, and the time step. The graphs seems to be of
the same nature, which meets the expectations built using
(23). Thus we can see that the governing factor for the
instability is actually the product ωi × ∆t, which represents
the approximate angle by which the magnetic field has rotated
with respect to the magnetorquers. This can be interpreted
by paying attention to the fact that the torque produced
starts supporting the magnetic field after b enters the second
quadrant. This would then explain the points of zero change,
where the same acceleration and decceleration cancel each
other out after rotations of 2nπ radians.

Figure 3. Change in angular velocity vs initial angular
velocity (∆ω vs ωi)

Figure 4. Change in angular velocity vs time step (∆ω vs
∆t)

Keeping in mind the previously used assumptions, we now
demonstrate that behaviour of the system is similar even with
torques of high magnitude. Figure 5 shows how the change in
angular velocity is affected by increasing the coefficient of the
algorithm. We can see that both the curves follow a similar
trend, with an apparent shift between them. Keeping in mind
that the torque can no longer be neglected to determine the
angle, it is evident that a higher initial angular velocity is
needed to rotate by the same angle, for the case of the higher
coefficient. It is to noted that the vertical axis have been
relatively-normalized to explain the apparent shift.

Figure 5. Change in angular velocity vs initial angular
velocity; for different Coefficients
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5. SIMULATIONS AND DISCUSSIONS
This section consists of the various simulations performed
to analyze and validate the various instability conditions, as
mentioned in Section 4. It is to be noted that all the graphs
shown here are for Algorithm 1 2, unless specified otherwise.
We perfomed similar study for Algorithm 2 2 as well, and the
results were similar to the ones shown below.

Figure 6. Angular velocity vs time step (ω vs t)

The figure 6 shows the variation of angular velocity with time,
for different initial conditions. We can see that for various
angular velocities, the equilibrium point is different. Cases
with velocities between −π and π converge to zero, while
those outside this range, converge to the nearest even multiple
of π.

The graph above is simulated for a fixed step time(∆t) and
coefficient (Kc). This indicates that any combination of these
parameters will have certain unstable points (not converging
to zero) , which have to be kept in mind while designing the
algorithms.

Figure 7. Average angular acceleration vs time step (ω̇av vs
∆t)

Figure 7 shows the variation of the average acceleration of
the body, for different step time used for implementation of
the algorithm. It can be clearly seen that a lower step time
results in better, faster desaturation of the angular velocity.
This underscores the performance of the system in continuous
domain vs that in the discrete domain.

The initial part of the trajectory follows our expectations and
shows that the efficiency of the algorithm decreases, as we
move away from the continuous domain. After a point, the

magnetorquer effect described in Subsection 4 takes over, and
varying amounts of acceleration and decceleration results in
an oscillating curve, as described in (23)

Figure 8. Angular velocity vs time (ω vs t)

Figure 8 shows the variation of angular velocity over time,
while using these algorithms for multiple time steps. This
shows that the conclusions about the performance, drawn
from Figure 7, holds true for longer periods of time as well.

Figure 9. Average angular acceleration vs coefficient vs
initial angular velocity; Symmetric Body (ω̇av vs Kc vs ωi)

Figure 9 is a result of the instability condition described in
Subsection 4. We can see that for a symmetric body, with
∆t/I = 1, the controller becomes unstable at Kc = 2. The
valley in the surface represents the point at which the angular
velocity is only along the magnetic field, and hence, at its
minimum.

An important point to be noted is that while we assumed low
initial angular velocity to derive the instability condition, it is
clear that the conditions holds for arbitrarily high initial an-
gular velocities as well. It is demonstrated that the instability
condition is independent of the angular velocity, as shown in
(17).
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Figure 10. Average angular acceleration vs step time vs
coefficient; Anant Satellite (ω̇av vs ∆t vs Kc)

Simulating with a complex body, we numerically integrate
over a long period of time. The variation of average angular
acceleration with change in timestep and coefficient is shown
in the surface of Figure 10. The results show little deviation
from the derived and simulated case of a symmetrical body.

Figure 11. Average angular acceleration vs initial angular
velocity vs step time; Symmetric Body (ω̇av vs ωi vs ∆t)

Figure 11 shows the change in the average angular accelera-
tion, with varying step time and initial angular velocity. If we
try and look at the two components of the graph separately,
we can make out two previously-established conclusions.

For a particular high angular velocity, the angular accelera-
tion changes with step time as shown in Figure 4. A similar
characteristic can be seen here as well. For a specific step
time, the angular acceleration changes with the initial angular
velocity as shown in Figure 3. The same feature of the curve
can be seen in the surface plot as well.

In fact, the ripples created in the surface re-trace the curve
ωi × ∆t = constant, which is exactly the result we estab-
lished in Subsection 4.

6. CONCLUSIONS
The paper goes over multiple sources of instability in de-
tumbling algorithms and derives criterion for the same. The
analysis is done for the two algorithms introduced in the
second section of this paper. The work was motivated by a

need to perform a discrete-time stability analysis and estab-
lish checkpoints before entering detumbling mode.

The first type of instability applies to both algorithms and is
explicitly dependent on the coefficient and time-step used.
The criteria for the same can be evaluated on ground, pre-
launch. The second type applies to only Bdot and relies on
angular velocity and timestep chosen. This comes from the
limitations of the magnetometers and could be tackled by
sampling the magnetic field more frequently. The third type
of instability applies to both algorithms and also depends on
the initial angular velocity and timestep chosen.

After an initial comparative analysis, BDot was selected as
the detumbling algorithm for the satellite [11]. The instability
criterion for this algorithm was then determined. The first
type of instability depends on the parameters of the controller,
as decided in the design phase. It is seen that ∆t = 1,
along with the optimized gain proposed by [7] successfully
avoids the pitfalls of this type. Given the timestep mentioned
above, the second and third instability can only be induced
by variations in the initial conditions. Using the derived
criteria (21), (25), and giving some margin of error due to the
asymmetric body of the satellite, we decided on a condition
for entry into the detumbling mode. If angular velocity is
higher than a predefined value, it will not be useful for the
satellite to enter into this mode. It should be allowed to
naturally detumble through drag in such a scenario.

The discussed instabilities underscore the need to ensure that
the control algorithms designed by any satellite manufacturer
are robust. The discussions and results of this paper will be
of essential assistance in ensuring that robustness.
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